

2019 Annual Drinking Water Quality Report (Consumer Confidence Report)

Rockett Special Utility District Phone Number: (972) 617-3524

SPECIAL NOTICE

Required language for ALL community Public water supplies:

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immune compromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

Public Participation Opportunities

Date: District Board Meetings, 3rd Tuesday of each month. Time: 7:00pm Location: Rockett SUD 126 Alton Adams Dr. Waxahachie, Texas 75165 Phone Number: (972) 617-3524

To learn about future public meetings (concerning your drinking water), or to request to schedule one, please call us.

En Español Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel.

(972) 617-3524 -para hablar con una persona bilingüe en español.

OUR DRINKING WATER IS REGULATED

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water. In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity.

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also, come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Where do we get our drinking water?

The source of drinking water used by ROCKETT SUD is Purchased Surface Water from Robert W. Sokol WTP (Cedar Creek, Richland Chambers Reservoirs) City of Midlothian (Joe Pool, Richland Chambers Reservoir, Cedar Creek) City of Waxahachie (Lake Waxahachie, Lake Bardwell). The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. The report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For information on source water assessments and protection efforts at our system, contact Robert Woodall - Operations Manager. Information about your sources of water, please refer to the Source Water Assessment Viewer available at the following: URL: http://dww.tceq.state.tx.us/DWW/. For more information on source water assessments are available in Drinking Water Watch at the following URL: http://dww.tceq.state.tx.us/DWW/. For more information on source water assessments and protection efforts at our system, please contact us. Do you conserve water? You can do your part to conserve water by; not watering between the hours of 10:00 am to 6:00 pm (this is the hottest part of the day); do not water the gutters and sidewalks; water every third to fifth day instead of every day. More water saving information is available at www.rockettwater.com.

ALL drinking water may contain contaminants

When drinking water meets federal standards there may not be any health-based benefits to purchasing bottled water or point of use devices. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

Required Additional Health Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Abbreviations

- NTU -Nephelometric Turbidity Units
- MFL -million fibers per liter (a measure of asbestos)
- pCi/L -picocuries per liter (a measure of radioactivity)
- **ppm** parts per million, or milligrams per liter (mg/L)
- **ppb** -parts per billion, or micrograms per liter (µg/L)
- ppt -parts per trillion, or nanograms per liter
- ppq -parts per quadrillion, or picograms per liter

Definitions

Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

MFL million fibers per liter (a measure of asbestos)

- na: not applicable.
- NTU nephelometric turbidity units (a measure of turbidity)
- pCi/L picocuries per liter (a measure of radioactivity)
- ppb: micrograms per liter or parts per billion or one ounce in 7,350,000 gallons of water.
- ppm: milligrams per liter or parts per million or one ounce in 7,350 gallons of water.
- ppt parts per trillion, or nanograms per liter (ng/L)
- ppq parts per quadrillion, or picograms per liter (pg/L)

2019 Regulated Contaminants Detected

Disinfectant Type	Average Level	Min Level	Max Level	MRDL	MRDLG	Unit	Source
2019 Chloramines	3.2	0.5	4.0	4.0	<4.0	ppm	Disinfectant used to control microbes
2019 Free Chlorine	2.5	0.2	4.0	4.0	<4.0	ppm	Disinfectant used to control microbes

Maximum Residual Disinfectant Level

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2019	1.3	1.3	0.106	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collectio n Date	Highest Level Detected	Range of Levels Detected	MCLG	MC L	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2019	34	14-45.8	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.
Total Trihalomethanes (TTHM)	2019	51	32.8-60.9	No goal for the total	80	ppb	Ν	By-product of drinking water disinfection.

Inorganic Substance	Collectio n Date	Highest Level Detected	Range of Levels Detected	MCLG	MC L	Units	Violation	Likely Source of Contamination
Nitrate (measured as Nitrogen)	2019	2.0	0.0894-1.64	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Nitrite (measured as Nitrogen)	2018	0.281	0.281-0.281	1	1	Ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

City of Waxahachie

2019 Wholesale Consumer Confidence Report Data City of Midlothian – PWS 0700008

Sources: TARRANT REGIONAL WATER DISTRICT

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorite	2019	0.488	0 - 0.488	0.8	1	ppm	Ν	By-product of drinking water disinfection.
Haloacetic Acids (HAA5)	2019	44	20.3 - 75.9	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.

* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Total	2019	62	35.8 - 100	No goal	80	ppb	Ν	By-product of drinking
Trihalomethanes				for				water disinfection.
(TTHM)				the total				

'* The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2019	0.056	0.051 - 0.056	2	2	ppm	Ν	Discharge of drilling wastes Discharge from metal refineries; Erosion of natural deposits.
Cyanide	2019	84.1	0 - 84.1	200	200	ррb	Ν	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
Fluoride	2019	0.2	0.119 - 0.17	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2019	1	0.821 - 1.15	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2019	4.8	4.8 - 4.8	0	50	pCi/L*	Ν	Decay of natural and man- made deposits.

*EPA considers 50 pCi/L to be the level of concern for beta particles.

Synthetic organic contaminants including	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2019	1	0.4 - 0.7	3	3	ppb	Ν	Runoff from herbicide used on row crops.
Simazine	2019	0.17	0 - 0.17	4	4	ppb	Ν	Herbicide runoff.

Disinfectant Residual

' A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).'

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDL G	Unit of Measure		Source in Drinking Water
	2019			4	4		ppm	Water additive used to control microbes.

Turbidity

	Level Detected	Limit (Treatment Technique)	Violation	Likely Source of Contamination
Highest single measurement	0.17 NTU	1 NTU	Ν	Soil runoff.
Lowest monthly % meeting limit	100%	0.3 NTU	Ν	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

City of Midlothian

2019 Wholesale Consumer Confidence Report Data City of Midlothian – PWS 0700005

Sources: Surface Water from Joe Pool Lake/TRA & Richaland Chambers and Cedar Creek Reservoirs/TRWD

Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorite	2019	0.926	0.186 - 0.926	0.8	1	ppm	Ν	By-product of drinking water disinfection.
Haloacetic Acids (HAA5)	2019	32	15.7 – 48.3	No goal for the total	60	ppb	Ν	By-product of drinking water disinfection.

 '* The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year'

Total	2019	37	12.2-46.6	No goal	80	ppb	Ν	By-product of drinking
Trihalomethanes				for				water disinfection.
(TTHM)				the total				

"The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year'

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	2019	0.049	0.035-0.049	2	2	ppm	Ν	Discharge of drilling wastes Discharge from metal refineries; Erosion of natural deposits.
Cyanide	2019	41.4	0-41.4	200	200	ppb	N	Discharge from plastic and fertilizer factories; Discharge from steel/metal factories.
Fluoride	2019	0.204	1.151-0.204	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Nitrate [measured as Nitrogen]	2019	1	0.548-0.744	10	10	ppm	Ν	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/photon emitters	2019	4.3	4.3-4.3	0	50	pCi/L*	Ν	Decay of natural and man- made deposits.

*EPA considers 50 pCi/L to be the level of concern for beta particles.

Synthetic organic contaminants including	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Atrazine	2019	0.1	0-0.1	3	3	ppb	Ν	Runoff from herbicide used on row crops.
Simazine	2019	0.28	0-0.28	4	4	ppb	Ν	Herbicide runoff.

Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Xylenes	2019	0.00083	0-0.00083	10	10	Ppm	Ν	Discharge from petroleum factories; Discharge from chemical factories

Disinfectant Residual

'A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).'

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDL G	Unit of Measure	Violation (Y/N)	Source in Drinking Water
	2019	3.0725	2.5-3.27	4	4	Ppm	N	Water additive used to control microbes.

Turbidity

	Level Detected	Limit (Treatment Technique)	Violation	Likely Source of Contamination
Highest single measurement	0.3 NTU	1 NTU	Ν	Soil runoff.
Lowest monthly % meeting limit	100%	0.3 NTU	Ν	Soil runoff.

Information Statement: Turbidity is a measurement of the cloudiness of the water caused by suspended particles. We monitor it because it is a good indicator of water quality and the effectiveness of our filtration system and disinfectants.

Total Organic Carbon

The percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted in the violations section.

Violations Table

Lead and Copper Rule			
The Lead and Copper Rule protects public h corrosivity. Lead and copper enter drinking	ealth by minimizing water mainly from c	lead and copper le corrosion or lead ar	vels in drinking water, primarily by reducing water ad copper containing plumbing materials.
Violation Type	Violation Begin	Violation End	Violation Explanation
AV - 30 TAC 290.45(f)(4)	12/12/2017	Applying for variance	Failure to provide 0.6 gpm per connection plus the contractual obligations.
Nitrate [measured as Nitrogen]			
Infanta halaw the ere of air months who dri	nl. watan aantainin a		the MCL could become seriously ill and, if
untreated, may die. Symptoms include short			
untreated, may die. Symptoms include short	ness of breath and bl	ue-baby syndrome	

Water Loss as Reported in the Water Loss Audit

In the water loss audit submitted to the Texas Water Development Board for the time period of January-December 2019, our system lost an estimated 298,770,660 gallons. If you have any questions, please contact our office at (972) 617-3524.